¹⁵N NMR Study of the Adsorption of NO and NH₃ on Titania-Supported Vanadia Catalysts

Sanlin Hu and Tom M. Apple¹

Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180

Received January 13, 1995; revised September 19, 1995; accepted September 25, 1995

of V_2O_5/TiO_2 catalysts used for selective catalytic reduction (SCR) has been investigated by solid-state ¹⁵N NMR. The chem-(SCR) has been investigated by solid-state ¹⁵N NMR. The chem-
istry and the surface acidity are found to vary dramatically as
the weight loading of vanadia is increased from 0 to 10%. NO
trom the gas phase according to **catalyst is an indicator of the Lewis acid character of the sur-** are the principal active sites for the SCR of NO. face. The Lewis acidity of the surface is found to decrease with **the loading of V₂O₅ on the titania support. Ammonia adsorbs** mechanism for the reaction of NO and NH₃ in the presence in two forms on evacuated TiO₂ and V₂O₅/TiO₂. These two of oxygen (20) has been proposed in two forms on evacuated TiO₂ and V₂O₅/TiO₂. These two of oxygen (20) has been proposed; two neighboring forms differ in their surface mobility. The reaction of NO with $V^{5+} = O$ groups participating as the activ forms differ in their surface mobility. The reaction of NO with $V^{5+}=O$ groups participating as the active sites. Other re-
NH₃ over the catalysts proceeds to a measurable degree at room
temperature. N₂ is the predom **loading regardless of the actual vanadia loading. This indi-** oxidation of ammonia to NO and the formation of N₂O cates that ammonia is adsorbed predominately on the Lewis from NO and NH₃. Topsge (22, 23) has suggest cates that ammonia is adsorbed predominately on the Lewis from NO and NH₃. Topsøe (22, 23) has suggested that the accid sites of the catalysts or the access of N₂O to these Brønsted acid sites on the vanadia–titania ca acid sites of the catalyst, blocking the access of N₂O to these **sites.** \circ 1996 Academic Press, Inc. **acidic V-OH** groups are the principal reaction sites in

Nitrogen oxides (NO_x) are major pollutants emitted dur-

ing many combustion processes. Among the various cata-

lysts used for the removal of NO_x from stationary sources

such as smokestacks itiania-supported vanadia

in the presence of oxygen over both bulk and supported The adsorption of nitric oxide (NO) by ammonia over a series V_2O_5 . They further deduced from gas chromatography and infrared investigations that $NH₄$ acts as the active ammonia

> SCR of NO_x . Their results also indicate that an interaction exists between the Brønsted and Lewis acid sites on the **INTRODUCTION** vanadia–titania surface or possibly a transformation be-

Inomata *et al.* (18) have found that the $V^{5+}=O$ sites are
catalytically active toward the reaction of NO with NH₃ be activation of the adsorbed NH₃ species. Recently,
Dumesic *et al.* (27) also proposed an activate species formed from adsorbed ammonia. This species sub-¹ E-mail: applet@rpi.edu. **1 E-mail:** applet@rpi.edu. **1 E-mail:** applet@rpi.edu.

Eckert and co-workers (28, 29) have used 51 V NMR to study the local environments of two dimensional vanadium (V) oxide surface layers on titania. Went and Reimer (30) *Preparation of Samples for NMR Analysis*

FiO₂ catalysts with various loadings of vanadia. In this less than 1×10^{-5} Torr (1 Torr = 133.3 Nm⁻²) during
TiO₂ catalysts with various loadings of vanadia. In this leading at 373 K.
face is examined in the abs

Catalyst Preparation

NMR Methods The titania support was prepared from titanium isopropoxide according to the method described by Krishna and ¹⁵N NMR measurements were carried out at 36.47 MHz Bell (34). The resulting catalyst was anatase with a BET on a Chemagnetic CMX-360 spectrometer, equipped with vanadia weight loadings of $0, 1, 3, 6$, and 10% were prepared quadrature detection were employed. The 90° pulse width using incipient-wetness impregnation. For each sample, was 10 μ s corresponding to a B₁ field of 25 kHz for ¹⁵N the amount of the ammonium metavanadate (NH_4VO_3) , with a repetition time of 10 s. The same pulse width was Aldrich 99%) required to give the desired weight percent used for CP experiments with a contact time of 3 ms. The of V_2O_5 was slowly added to a mixture of a stoichiometric number of signal accumulations ranged from 1000 to 2000. amount of oxalic acid and water. The oxalic acid is partially To avoid baseline distortions due to electronic probe recovdissolved in water at room temperature and completely ery, the first $20 \mu s$ of all free induction decays were redissolved when heated to 343 K with vigorous stirring. The moved prior to Fourier transformation. All chemical shifts resulting deep blue solution containing the complex were referenced to external ammonium nitrate $(NH_4)_2[VO(C_2O_4)_2]$ was cooled to room temperature and (NH_4NO_3) and are reported to an accuracy of ± 1 ppm. diluted to the appropriate volume determined by the incipient-wetness point of titania, 0.7 to 1.0 ml/g. This solution **RESULTS** was then dispersed dropwise on the titania. The resulting mixture was ground slowly and dried in N₂ flow in an ¹⁵N NMR spectra of NO over V₂O₅/TiO₂ catalysts with oven at 373 K overnight. In order to obtain a uniform V_2O_5 weight loadings ranging from 0 to 10 wt.% are shown distribution for those samples with 6 and 10 wt% V_2O_5 in Fig. 1. We observe three resonances for each of the loading, two impregnations were performed with an inter- catalyst samples. By comparison of the shifts to those remediate drying period. The oven-dried powder was pel-
ported in the literature (31, 35), we can assign unambiguletized to particles having diameters ranging from 125 to ously the most deshielded peak at 286 ppm appearing in

Although a variety of spectroscopic techniques have $250 \mu m$ (125–60 mesh). The catalyst was then calcined in been used to study the SCR of NO_x by NH₃, infrared a quartz tube under oxygen flow at 150 cm³/min for 4 h at spectroscopy is the most common $(1, 2)$. However, solid 473 K, followed by 8 h at 733 K. The catalyst was then state NMR measurements of supported vanadium oxide \sim cooled in 50 cm³/min oxygen flow to room temperature. catalysts have significantly contributed to the understand- The oxidized samples ranged in color from pale yellow ing of the molecular structure of these catalytic systems. (1 wt%) to brown (10 wt%). BET surface areas ranged /g (1 wt%) to 72 m²/g (10 wt%).

have used *in situ* proton and deuteron NMR techniques
to study the adsorption and desorption of ammonia as
a function of temperature on titania supported catalysts.
Mastikhin *et al.* (31, 32) have probed by ¹⁵N NMR th

METHODS in liquid nitrogen. Within our detection limits no other nitrogen oxides were present in the starting gases.

surface area of 81 m²/g. Vanadia–titania catalysts with a double-resonance probe. Standard phase cycling and

respectively. The chemical shift of the central nitrogen remains nearly constant for all samples, changing by at most ± 3 ppm. The chemical shift of the resonance assigned to the terminal nitrogen, however, changes with the nature of the support. Based upon the size of the NMR signals in Fig. 1 and their comparison to a standard sample we estimate that about 20 \pm 5% of the NO is observable as either N_2 or N_2O following room temperature adsorption over all samples except the 10% V_2O_5/TiO_2 , which converts approximately $15 \pm 5\%$.

Ammonia was adsorbed on both $TiO₂$ and $V₂O₅/TiO₂$ catalysts at room temperature. The saturation adsorption levels of NH₃ on the catalysts were about 380 μ mol of NH₃ per gram of catalyst. The loading of $NH₃$ on TiO₂ did not differ significantly from that on the V_2O_5/TiO_2 catalysts.

The ¹⁵N NMR spectra of NH₃ adsorbed on 3% $V_2O_5/$ $TiO₂$ at room temperature are shown in Fig. 2. Spectra 2a and 2b were obtained using single pulse and cross polarization experiments, respectively. The single pulse experiment shows one resonance at -9 ppm. This peak is much broader than those observed for N_2O . In the cross-polarization experiment a second broader peak is apparent, centered at 7 ppm. There are, thus, two different adsorption sites or adsorbed forms of NH₃. No drastic differences were **FIG. 3.** ¹⁵N NMR spectra of NO and NH₃ over TiO₂ and V₂O₅/TiO₂ observed for NH₃ adsorbed on the other V₂O₅/TiO₂ cata-
catalysts: (a) TiO₂, (b) observed for NH₃ adsorbed on the other V_2O_5/TiO_2 cata-lysts.

FIG. 2. ¹⁵N NMR spectra of NH₃ adsorbed on $V_2O_5(3%)/TiO_2$ catalysts at room temperature: (a) single pulse, (b) cross-polarization.

FIG. 1. ¹⁵N NMR spectra of NO adsorbed on TiO₂ and V₂O₅/TiO₂ $\frac{V_2O_5/TiO_2}{V_2O_5/TiO_2}$ exposed to 40 Torr of NO. Only a small pressure drop is catalysts: (a) 0%, (b) 1%, (c) 3%, (d) 6%, (e) 10%. gram of catalysts. The color of the samples, however, changes dramatically from yellow to a whitish-gray. The all spectra to N_2 , and the peaks at 212 ppm and 149 ppm $15N NMR$ spectra of representative samples are shown in in Fig. 1a to the central and terminal nitrogens of N₂O, Fig. 3. Figure 3a is a sample of TiO₂ and no significant

NO induction, (c) after heating at 373 K for 2 h.

3a correspond to the central nitrogen (211 ppm) and the duction of some Ti^{4+} to Ti^{3+} or V^{5+} to V^{4+} . V⁴⁺ centers terminal nitrogen (125 ppm) of N_2O . Figure 3b shows a are good candidates for the reaction center. The formation sample of 6% V_2O_5/TiO_2 . An intense peak due to N₂ is of N₂O under our experimental conditions is likely to inobserved, as well as small resonances due to N_2O . When volve a mechanism similar to that of NO photodecomposithe sample is held at 373 K the peak at -9 ppm due to tion (37, 38), involving reduced metal ions: NH3 nearly disappears, while the intensity of the peak for N_2 increases (Fig. 3c).

DISCUSSION or

The room temperature adsorption of NO on all evacuated catalysts shows resonances for only N₂ and N₂O (Fig. 1). At room temperature $15NO$ is paramagnetic and, therefore, NMR inactive. The resonance for the terminal nitro- Our preliminary ESR results show that all of the evacuated gen of N₂O is strongly dependent upon the support. This V_2O_5/TiO_2 catalysts give rise to V⁴⁺ centers.
provides strong evidence that the bonding of N₂O to the The adsorption of NH₃ on the evacuated catalysts sh provides strong evidence that the bonding of N_2O to the

with V_2O_5 loading, the selectivity of the catalyst to N_2 is to confirm this hypothesis. still very low without coadsorption of $NH₃$. All catalysts On these evacuated surfaces, TiO₂ adsorbs roughly the

upon NO adsorption on pure titania, but not on evacuated is adsorbed on evacuated $TiO₂$ than on the supported cata- V_2O_5/TiO_2 surfaces. They argued that Ti^{3+} ions were the lysts. reaction centers and that these exist only on the evacuated While several authors (5, 40) have reported the formatitania surfaces. The presence of Ti^{3+} ions on the surface NH₃ to 423 K. of TiO₂ and other oxides is well known (36). V_2O_5 and When NO was exposed to TiO₂ predosed with NH₃ $TiO₂$ are both *n*-type semiconductor oxides, and as such, (Fig. 3a) only two resonances corresponding to N₂O are

amount of N_2 is observed. The two resonances in Fig. they lose oxygen upon heating with an accompanying re-

$$
2Ti^{3+} + 2NO \rightarrow 2 Ti^{4+} + O^{2-} + N_2O
$$

$$
2V^{4+} + 2NO \rightarrow 2V^{5+} + O^{2-} + N_2O.
$$

surface involves a strong contribution from the N side. primarily a single resonance at -9 ppm (Fig. 2). The line This result does not, however, rule out any contribution width of this peak indicates that $NH₃$ is rather strongly from the O side to the surface bonding of the molecule anchored to the surface and has restricted mobility. It is, on the time scale of the NMR experiment. The change in however, by no means rigid. The single pulse NMR experishift with the nature of the catalyst surface may be attrib- ment reveals all of the $NH₃$ on the surface, while the crossuted to the varying acidic character as one incorporates polarization experiment emphasizes the more rigidly held increasing amounts of V_2O_5 onto the TiO₂ surface. It has adsorbates. In the cross-polarization experiment a second been reported (31, 32) that interaction of $N₂O$ with Lewis form of ammonia is clearly evident. This second species acid sites results in a downfield shift of the terminal nitro- has a slightly different chemical shift $(+7$ ppm) and a gen of N_2O , while interaction with Brønsted acid sites has greater line width. All catalysts showed two adsorbed little effect on the shift. In Fig. 1a, the terminal nitrogen forms of $NH₃$ by ¹⁵N NMR. There are, thus, two different has a chemical shift of 149 ppm, in agreement with the adsorption sites or adsorbed forms of $NH₃$ on all of the predominantly Lewis acid nature of anatase $TiO₂$. As the catalysts. No drastic differences in shifts or linewidths were loading of V_2O_5 increases, the shift gradually moves up-
observed for the various catalysts. We rule out, therefore, field, eventually reaching 125 ppm for 10% V_2O_5 loadings. the possiblity that these two lines represent ammonia ad-From this result it appears that the Lewis acidity of the sorbed at Brønsted and Lewis acid sites, since the proporsurface is decreasing with increased V_2O_5 loading. A slight tion of these sites should change dramatically between increase in linewidths with V_2O_5 loading is also noted in catalysts. It is possible that these two forms correspond to Fig. 1. This increase is presumably due to decreased mobil- the active and inactive forms of ammonia proposed by ity of the adsorbed N2O since both the terminal and central Dumesic *et al*. (27). The species having the greater line resonance are broadened. In addition room temperature width is more strongly held to the surface. This species ESR spectra of these unreduced catalysts revealed no para- differs more from physisorbed $NH₃$ than the narrow line magnetic species. in both shift and line width. This makes it the more likely Although the intensity of the peak due to N_2 increases candidate for the active form. Further work is necessary

show a rather low ratio of N₂ production relative to N₂O. same amount of NH₃ as V₂O₅/TiO₂. This is in contrast to Ramis *et al.* (24, 25) have reported that N₂O is formed the report (39) that a significantly lower amount of NH₃

titania surface, not on the evacuated vanadia–titania sur-
tion of N_2O due to the direct oxidation of NH_3 at higher face. Our data show clearly that N_2O is formed not only temperature over these catalysts, we found no evidence of on the pure titania surface, but also on the various vanadia– N_2O following heating of these samples loaded only with

observed. Thus at room temperature TiO₂ is catalytically **REFERENCES** inactive for the SCR of NO by $NH₃$. This observation is consistent with reports in the literature (2). It is interesting
to note that the chemical shift of the terminal nitrogen
over the TiO₂ catalyst has shifted upfield by over 20 ppm
relative to its position in the absence NH₃. Because the greater downfield shift observed for the 35, 351 (1987).
 S. Went, G., Leu, L., Lombardo, S. J., and Bell, A. T., J. Phys. Chem.
 S. Went, G., Leu, L., Lombardo, S. J., and Bell, A. T., J. Phys. Chem terminal nitrogen on $TiO₂$ not dosed with NH₃ is due to $\frac{5. \text{Went, G., Leu}}{96,2235 \cdot (1992)}$. interaction of N₂O with Lewis sites, these sites must not
be available on TiO₂ that has been dosed with NH₃. NH₃
7. Li, Y₁, and Armor, J. N_n J. Catal. **145**, 1 (1994). must, therefore, preferentially adsorb on the Lewis sites 8. Kaspar, J., Leitenburg, C., Fornasiero, P., Trovarell, A., and Graziani, of the titania surface. M., *J. Catal.* **146,** 136 (1994).

NO reacts with preadsorbed NH_3 on 6% V_2O_5/TiO_2 at $9.$ Deo, G., and Wachs, I. E., *J. Catal.* **146**, 335 (1994). (1994) . (1994) . (1994) . (1994) . (1994) . (1994) . (1994) . (1994) . (1994) . (1994) . room temperature (Fig. 3b), giving an intense peak from
N₂. This peak grows with time and a concurrent decrease
11. Schneider, H., Scharf, U., Wokaun, A., and Baiker, A., J. Catal. 146, in the intensity of the ammonia resonance is observed. At \qquad 545 (1994). higher temperatures this occurs far more rapidly (Fig. 3c). 12. Zhang, K., Walters, A. B., and Vannice, M. A., *J. Catal.* **146,** 568 N₂O is also observed over all V₂O₅/TiO₂ catalysts. The (1994).

origin of the N₂O in these coadsorption experiments will 13. Schneider, H., Tschudin, S., Schneider, M., Wokaun, A., and Baiker, be the subject of terminal nitrogen of N_2O is always close to that of the $15.$ Cho, B. K., Shanks, B. H., and Bailey, J. E., *J. Catal.* **115**, 486 (1989). samples with 6% vanadia loading. Thus, ammonia prefers 16. Guglielminotti, E., and Boccuzzi, F., *J. Catal.* **141,** 486 (1993). 17. Takagi, M., Kawai, T., Soma, M., Onishi, T., and Tamaru, K., *J. Catal.* TiO. catalysts. Intermediates such as NH NO have been 50, 441 (1977). TiO₂ catalysts. Intermediates such as NH₂NO, have been
reported (41) during this reaction at between 573 K and
 $\frac{18}{Phys. Chem. 87, 754 (1983)}$.
Frankling this reaction at between 573 K and
 $\frac{18}{Phys. Chem. 87, 754 (1983)}$.
T ence of such species at room temperature, however, they **43,** 359 (1988). may exist in quantities too small for observation by ¹⁵N 20. Janssen, F. J. J. G., van den Kerkhof, F. M. G., Bosch, H., and Ross, NMR or their lifetimes may be too short for observation J. R. H., *J. Phys. Chem.* **91**, NMR, or their lifetimes may be too short for observation J. R. H., *J. Phys. Chem.* **91,** 6633 (1987).
21. Ozkan, U. S., Cai, Y., Kumthekar, M. W., and Zhang, L., *J. Catal.*

on the NMR timescale.

As mentioned previously, the V_2O_5/TiO_2 catalysts un-

22. Topsge, N.-Y., J. Catal. 128, 499 (1991). dergo a color change from yellow to white grey during 23. Topsøe, N.-Y., *J. Catal.* **134,** 742 (1992). SCR. This color change is reversible by exposure of the 24. Ramis, G., Busca, G., Bregani, F., and Forzatti, P., *Appl. Catal.* **64,** catalyst to O_2 or air. It appears that in the absence of O_2 , $\begin{array}{c} 259 \ (1990)$.

surface vanadium atoms are undergoing a reduction during $\begin{array}{c} 259 \ (1990)$.

SCR. We are investigating this further by ESR. $\begin{$

28. Eckert, H., and Wachs, I. E., *J. Phys. Chem.* **93,** 6796 (1989). Exposure of evacuated TiO2 and V2O5/TiO2 catalysts to 29. Das, N., Eckert, H., Hu, H., Wachs, I. E., Walzer, J. F., and Feher, NO results in the production of N_2O . N_2 is also formed in F. J., *J. Phys. Chem.* **97,** 8240 (1993).
significant amounts over the vanadia-containing catalysts, 30. Went, M. S., and Reimer, J. A., *J. Am. Chem. Soc.* significant amounts over the vanadia-containing catalysts, 30. Went, M. S., and Reimer, J. A., *J. Am. Chem. Soc.* 114, 5768 (1992).
hut not over TiO. The ¹⁵N chemical shift observed for 31. Mastikhin, V. M., Mudrakovsky but not over TiO_2 . The ¹⁵N chemical shift observed for ^{31.} Mastikhin, V. M., Mudrakovsky, the terminal nitrogen of N. Quaragets that the Lawis exidity. *Phys. Lett.* **149**, 175 (1988). the terminal nitrogen of N₂O suggests that the Lewis acidity
of the V₂O₅/TiO₂ surfaces decreases with the loading of va-
nanokov, V. N., J. Chem. Soc. Farad. Trans. 1 **87**, 2247 (1991).
nadia.
33 Mastikhin V. M. a

 $NH₃$ adsorbs readily on both TiO₂ and V₂O₅/TiO₂. Two **88**, 1473 (1992).

Supermits of NH₂ are revealed by ¹⁵N NMR upon adsorption 34. Krishna, K. R., and Bell, A. T., *J. Catal.* **130**, 597 (1991). forms of NH₃ are revealed by ¹⁵N NMR upon adsorption ³⁴. Krishna, K. R., and Bell, A. T., *J. Catal.* **130**, 597 (1991).

of ammonia. These two types differ in their mobilities, ³⁵. Witanowski, M., Stefaniak, L., preferentially at Lewis acid sites, preventing N2O adsorp- 36. Courbon, H., and Pichat, P., *J. Chem. Soc. Farad. Trans. 1* **80,** tion at those sites. 3175 (1984).

-
-
-
- 4. Baiker, A., Dollenmeier, P., Glinski, M., and Reller, A., *Appl. Catal.*
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- N.-Y., *J. Catal.* **135,** 246 (1992).
- 27. Dumesic, J. A., Topsøe, N.-Y., Slabiak, T., Morsing, P., Clausen, B. S., Tornqvist, E., and Topsøe, H., *in* ''Proceedings, 10th Intl. Congress on CATALUSIONS Catalysis, Budapest, 1992" (L. Guczi, F. Solymosi, and P. Tétényi, Eds.), p. 1325. Akadémiai Kiadó, Budapest, 1993.
	-
	-
	-
	-
	-
	- 33. Mastikhin, V. M., and Filimonova, S. V., *J. Chem. Soc. Farad. Trans.*
	-
	-
	-
- 37. Escalona Phtero, E., Spoto, G., and Zechina, A., *J. Chem. Soc. Farad.* ACS Symposium Series Vol. 523, (S. T. Oyama and J. W. Hightower, *Trans. 1* **81,** 1283 (1985). Eds.), p. 231. Amer. Chem. Soc., Washington, DC, 1993.
- 38. Fernandez, A., Leyrer, J., Gonzalez-Elipe, A. R., Munuera, G., and 40. Ozkan, U. S., Cai, Y., and Kumthekar, M. W., *J. Catal.* **149,** Knozinger, H., *J. Catal.* **112,** 489 (1988). 390 (1994).
- 39. Kanta Rao, P., and Narasimha, K., *in* ''Catalytic Selective Oxidation'', 41. Farber, M., Harris, S. P., *J. Phys. Chem.* **88,** 680 (1984).

-
-